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Multiscaling of energy correlations in the random-bond Potts model
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We numerically calculate the exponents governing the disorder averaged and fixed-sample decay of the
energy-energy correlator in trgpstate random-bond Potts model. Our results are in good agreement with a
two-loop expansion arourgi= 2 recently found from perturbative renormalization group techniques, fulfill the
correlation length bouna=2/d, and give further evidence against replica symmetry breaking in this class of
models.
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[. INTRODUCTION a function ofqg, by scanning for an extremum of the effective
central charge. In conjunction with an improved transfer ma-
The g-state random-bond Potts model is an interestingrix algorithm in which the Potts model is treated through its
framework for examining how a phase transition is modifiedrepresentation as a loop model, this allowed Jacobsen and
by quenched disorder coupling to the local energy densityPicco [8] to produce very accurate results for the central
For g>2 such randomness acts as a relevant perturbatiogharge and the magnetic scaling dimension in the regime
[1], and forg>4 it even changes the nature of the transition>4- ] . ) )
from first to second ordefsee Ref[2] for a review. In the . On the analytical side, the pertu.rbanve expansions for the
regime where ¢—2) is small, a score of analytical results first three moments of the energetic two-point function have

have been obtained from the perturbative renormalizatioﬁ’een knowtr|1 f?r: c:qute som(ej tll_n[§0]. Iltwas, hgwde\_/er, only
group, and the various expansions for the central cha_rge qnvcﬁgnrefﬁgsg co?’n Etr:a?ij:s touamgnén;uh(:(r:r?or?]e:t] gf?heg'
the multiscaling exponents for the moments of the spm-spn‘?l 9 p—N 9 e
correlator compare convincingly to recent numerical work€nergy operatofe (xy) e (Xz))" o X, —x,| >N, yielding

[3].

A particularly useful way of carrying out these simula-
tions is to consider the finite-size scaling of the Lyapunov
spectrum of thegrandon) transfer matrix, thus generalizing
the method commonly applied to the eigenvalue spectrum iin particular, this makes available the experimentally rel-
a pure systenp4]. A definite advantage over the more tradi- eyant exponentX; describing the typical decay of the
transfer matrices allpw fora representation in whiptan pe In this Rapid Communication we show that by combining
regarded as a continuously varying paraméted], and in the methods of Refg4,8] the exponent¥, and7(6 can be

articular one can study small non-integer values . . . .
P The outcome of apglying this methgod to tlw?rfgeezic quite accurately determined numerically for smajH2). In

sector of the transfer matrix, however, led to contradictoryf?arti;:“'ar’h"‘t’)e find>;l>1din full agrelzerr;ené with the correla-
results[4]. Most notably, the exponerX; describing the tion length bound7], and our results lend strong support to

asymptotic decay of the disorder-averaged first moment Owoen atrmgtjle two-loop results of the perturbative renormaliza-
the two-point function(s(x;)(X,) ) |x;—X,| ~2*1 seemed grotp-
to be a rapidly decreasing function qf in sharp disagree-
ment with an exact bound on the correlation length exponent,
v=2/d [7], which in our notation read¥,;>1. In order to compare our results with those of tlie-(2)
More recent numerical work has emphasized the imporexpansion, while on the other hand staying comfortably
tance of crossover behavifi] from the random fixed point away fromg=2 where logarithmic corrections are expected
to, on one side, the pure Potts model, and on the other, [d2], our main series of data has=2.5. lterating the transfer
percolationlike limit[4] in which the ratioR=K;/K, be-  matrix for a strip of widthL a large numbeM>L of times,
tween strong and weak couplings tends to infinity. It becamave examine the probability distribution of the ratio between
clear that while the fixed rati®R=2 employed in Ref[4] the two largest Lyapunov exponentg, A4 [13]in terms of
seems to have been adequate for studying the spin secttire free energy gapf(L)=(1/LM)In(Aq/A;). We employ
when (@—2) is small, in general higher values & are the loop representation of the transfer matrix where each
needed to measure the true random behavior in the reginieop on the surrounding lattice is given a weigi /q [14],
g>4 [5]. and bond randomness is incorporated by weighing the two
These findings were put on a firmer ground when it waspossible vertex configurations by and 1iv; , wherew; is a
realized[8] that Zamolodchikov's-theorem[9] can be used quenched random variable that can assume two different val-
to explicitly trace out the critical disorder streng® (q) as  uessand 15, each one with probability 1/i8]. By construc-

S‘(N:N

2
1-—(3N—-4)(q—2)*+0(q—-2)°|. (1)
9w

II. SIMULATIONS
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TABLE |. Effective central charges(L,L+2) of the q=2.5 TABLE IIl. Effective exponentX;(L) of the q=2.5 state

state model, as a function of disorder strengtnd the strip width  model, as a function of disorder strengtland the strip widtH_.
L.

s «6.8) o(8.10) £(10.12) s X1(6) X1(8) X1(10) X41(12)
1.0 0.9791 0.9513 0.9375 0.9293

1.0 0.63775 0.648 44 065404 ¢ 10016 0.9746 0.9514

L5 0.63774 0.64854 2.0 1.0389 1.0124 0.9997

2.0 0.63770 0.648 74 22 1.0534 1.0269 1.0142 1.0065

2.1 0.63767 0.64877 23 1.0603 1.0338 1.0212 1.0133

2.2 0.63764 0.64879 065415 5 1.0671 1.0405 1.0279 1.0198

2.3 0.63759 0.648 80 065415 5 g 1.0735 1.0469 1.0343 1.0260

24 0.637 54 0.64879 065413 , ¢ 1.0798 1.0531 1.0405 1.0320

25 0.637 48 0.64879 0.65411

26 0.637 40 0.64877 0.654 09

numerical instabilities. We can therefore with confidence
truncate the sum of the cumulants after the second one.
tion, the system is then on average at its self-dual fdi5k Resulting finite-size estimateid7] of X, and X, are
The strength of the disorder is measuredsbyl, which iS  shown in Tables Il and Ill, respectively. Unlike what seemed
related to the ratio between strong and weak bondRby g pe the situation in thenagneticsector, these estimates
=K1 /K,=In(1+syq)/In(1+/g/s). The maximum strip  exhibit a pronounced dependence oracobsen and Cardy
width employed in the study i§ma=12. N . [4] worked at fixedR=2, which for q=2.5 would corre-
Following Ref.[8], we start by locating the critical disor- spond tos=1.7, and foun(f(6<1 for all g>2. We see here

der strengirs, by searching for a maximum of the ef_fect|_v € that the correct way to extract these exponents is to extrapo-
central charge. To do so, we must be able to determine finitg>, . 1has—s. data to thelL oo limit. With the help of
" .

size estimateg(L,L+2) [16] with five significant digits, e - )

which means that the free enerdy(L)= (1/LM)In(Ao) ![r;}ﬁroved two-point estimategt] (not shown, we thus ob

must be known with seven digit precision. These consider-

ations fix the necessary number of iterations tovbe 10°. X!/=1.021), X,=1.001) )
Our results forc(L,L+2) as a function oL ands are o= oo '

shown in Table I. For a sufficiently large system sizehese  which verifies the bound of Ref7]. These exponents, as

data exhibit a maximum as a function sfthe position of \\q|| as the result for their differendé, — X, = 0.0155), are

which determines a finite-size estimatg(L), which con- very good agreement with the € 2)-expansion; see Eq.
verges tos, asL—o. From the data of Table I, supple- (1).
mented by improved three-point fifg] (not shown, we ex- We have also performed simulations for higher values of
trapolate tos, (q=2.5)=2.5(1). _ o q, where the discrepancy between R¢f§.and[7] was even
The fluctuations iMAf(L) are examined by dividing the 1,51 pronounced, sincg, is an increasing function od.
strip into M/m samples, each one of length=1C°, from q=2.75 andq=3, we had to increase the number of
which the first few cumulants aif(L) can be determined. jierations toM=10° in order to keep the error bars under
As discussed in Ref4], the exponenkj is related to the control despite the higher disorder strength. In all cases we
finite-size scalind17] of the mean valuéfirst cumulant of found good agreement with Reff7] and with the (—2)
Af(L), whereasX, is similarly determined from the sum of expansion, at least in the range where the latter can be as-
the entire cumulant expansion. In practice, the second cumgumed to be valid. A summary of our results is given in
lant is roughly two orders of magnetude smaller than theTable IV.
first, and higher cumulants are expected to be further sup-
pressed, even though their determination is made difficult by [1l. CONCLUSION

In summary, we have shown that the apparent violation of

TABLE II. Effective exponeniXy(L) of theq=2.5 state model, he correlation length bouri] observed in Ref{4] can be

as a function of disorder strengshand the strip widtH_.

TABLE IV. Numerical results for the critical disorder strength

S X4(6) X4(8) X4(10) X5(12) (s, orR,) and energetic scaling exponendj(andX,) as func-
10 0.9791 0.9513 0.9375 0.9293 tlch)rg)(sj of g. The agreement with the two-loop expansion, Eg, is
15 1.0026 0.9754 0.9622 good.
2.0 1.0468 1.0191 1.0057 q s, R, X, X,
2.2 1.0662 1.0377 1.0238 1.0158 . :

Numerics Theory Numerics Theory
2.3 1.0760 1.0470 1.0328 1.0246
24 1.0859 1.0563 1.0418 1.0333 250 2.5%1) 332 1.021) 1.023  1.001) 1.006
25 1.0958 1.0656 1.0506 1.0419 275 3.63) 4.15 1.042 1.051 1.01) 1.013

2.6 1.1057 1.0749 1.0595 1.0504 3.00 3.%5 4.710 1.063) 1.09 1.022) 1.02
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dismissed as a crossover effect due to the lack of tuning to In particular, we have supplied convincing numerical vali-
the critical disorder strength. In conjunction with the resultsdation of the two-loop expansiofl) for the energetic mul-
on degeneracy and descendents given in Ref.we would  tiscaling exponentgl1]. Our results also provide further evi-
thus claim that the transfer matrix methp#i8] can, at least dence in favor of the replica symmetric approach to the
in principle, be used to relate the entire Lyapunov spectrunperturbative calculations, since the assumption of initial rep-
to the operator content of thi@as yet unknownunderlying lica symmetry breaking leads t&,;=1+0(q—2)3 [18],

conformal field theory. which seems to be ruled out by the results given in Table IV.
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