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Multiscaling of energy correlations in the random-bond Potts model
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We numerically calculate the exponents governing the disorder averaged and fixed-sample decay of the
energy-energy correlator in theq-state random-bond Potts model. Our results are in good agreement with a
two-loop expansion aroundq52 recently found from perturbative renormalization group techniques, fulfill the
correlation length boundn>2/d, and give further evidence against replica symmetry breaking in this class of
models.

PACS number~s!: 05.70.Jk, 64.60.Ak, 64.60.Fr
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I. INTRODUCTION

The q-state random-bond Potts model is an interest
framework for examining how a phase transition is modifi
by quenched disorder coupling to the local energy dens
For q.2 such randomness acts as a relevant perturba
@1#, and forq.4 it even changes the nature of the transiti
from first to second order~see Ref.@2# for a review!. In the
regime where (q22) is small, a score of analytical resul
have been obtained from the perturbative renormaliza
group, and the various expansions for the central charge
the multiscaling exponents for the moments of the spin-s
correlator compare convincingly to recent numerical wo
@3#.

A particularly useful way of carrying out these simul
tions is to consider the finite-size scaling of the Lyapun
spectrum of the~random! transfer matrix, thus generalizin
the method commonly applied to the eigenvalue spectrum
a pure system@4#. A definite advantage over the more trad
tional technique of Monte Carlo simulations@5# is that the
transfer matrices allow for a representation in whichq can be
regarded as a continuously varying parameter@6,4#, and in
particular one can study small non-integer values of (q22).

The outcome of applying this method to theenergetic
sector of the transfer matrix, however, led to contradict
results @4#. Most notably, the exponentX̃1 describing the
asymptotic decay of the disorder-averaged first momen
the two-point function̂ «(x1)«(x2)&}ux12x2u22X̃1 seemed
to be a rapidly decreasing function ofq, in sharp disagree
ment with an exact bound on the correlation length expon
n>2/d @7#, which in our notation readsX̃1>1.

More recent numerical work has emphasized the imp
tance of crossover behavior@5# from the random fixed poin
to, on one side, the pure Potts model, and on the othe
percolationlike limit @4# in which the ratioR5K1 /K2 be-
tween strong and weak couplings tends to infinity. It beca
clear that while the fixed ratioR52 employed in Ref.@4#
seems to have been adequate for studying the spin s
when (q22) is small, in general higher values ofR are
needed to measure the true random behavior in the reg
q.4 @5#.

These findings were put on a firmer ground when it w
realized@8# that Zamolodchikov’sc-theorem@9# can be used
to explicitly trace out the critical disorder strengthR* (q) as
PRE 611063-651X/2000/61~6!/6060~3!/$15.00
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a function ofq, by scanning for an extremum of the effectiv
central charge. In conjunction with an improved transfer m
trix algorithm in which the Potts model is treated through
representation as a loop model, this allowed Jacobsen
Picco @8# to produce very accurate results for the cent
charge and the magnetic scaling dimension in the regimq
@4.

On the analytical side, the perturbative expansions for
first three moments of the energetic two-point function ha
been known for quite some time@10#. It was, however, only
very recently that Jeng and Ludwig@11# succeded in gener
alizing these computations to a generalNth moment of the
energy operator̂«(x1)«(x2)&N}ux12x2u22X̃N, yielding

X̃N5NS 12
2

9p2
~3N24!~q22!21O~q22!3D . ~1!

In particular, this makes available the experimentally r
evant exponentX̃08 describing the typical decay of th
energy-energy correlator in a fixed sample at criticality@10#.

In this Rapid Communication we show that by combini
the methods of Refs.@4,8# the exponentsX̃1 and X̃08 can be
quite accurately determined numerically for small (q22). In
particular, we findX̃1>1 in full agreement with the correla
tion length bound@7#, and our results lend strong support
the above two-loop results of the perturbative renormali
tion group.

II. SIMULATIONS

In order to compare our results with those of the (q22)
expansion, while on the other hand staying comforta
away fromq52 where logarithmic corrections are expect
@12#, our main series of data hasq52.5. Iterating the transfe
matrix for a strip of widthL a large numberM@L of times,
we examine the probability distribution of the ratio betwe
the two largest Lyapunov exponentsL0 , L1 @13# in terms of
the free energy gapD f (L)5(1/LM )ln(L0 /L1). We employ
the loop representation of the transfer matrix where e
loop on the surrounding lattice is given a weightn5Aq @14#,
and bond randomness is incorporated by weighing the
possible vertex configurations bywi and 1/wi , wherewi is a
quenched random variable that can assume two different
uess and 1/s, each one with probability 1/2@8#. By construc-
R6060 ©2000 The American Physical Society
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tion, the system is then on average at its self-dual point@15#.
The strength of the disorder is measured bys.1, which is
related to the ratio between strong and weak bonds bR
5K1 /K25 ln(11sAq)/ ln(11Aq/s). The maximum strip
width employed in the study isLmax512.

Following Ref.@8#, we start by locating the critical disor
der strengths* by searching for a maximum of the effectiv
central charge. To do so, we must be able to determine fin
size estimatesc(L,L12) @16# with five significant digits,
which means that the free energyf 0(L)5(1/LM )ln(L0)
must be known with seven digit precision. These consid
ations fix the necessary number of iterations to beM5108.

Our results forc(L,L12) as a function ofL and s are
shown in Table I. For a sufficiently large system sizeL, these
data exhibit a maximum as a function ofs, the position of
which determines a finite-size estimates* (L), which con-
verges tos* as L→`. From the data of Table I, supple
mented by improved three-point fits@4# ~not shown!, we ex-
trapolate tos* (q52.5)52.5(1).

The fluctuations inD f (L) are examined by dividing the
strip into M /m samples, each one of lengthm5105, from
which the first few cumulants ofD f (L) can be determined
As discussed in Ref.@4#, the exponentX̃08 is related to the
finite-size scaling@17# of the mean value~first cumulant! of
D f (L), whereasX̃1 is similarly determined from the sum o
the entire cumulant expansion. In practice, the second cu
lant is roughly two orders of magnetude smaller than
first, and higher cumulants are expected to be further s
pressed, even though their determination is made difficul

TABLE I. Effective central chargec(L,L12) of the q52.5
state model, as a function of disorder strengths and the strip width
L.

s c(6,8) c(8,10) c(10,12)

1.0 0.637 75 0.648 44 0.654 04
1.5 0.637 74 0.648 54
2.0 0.637 70 0.648 74
2.1 0.637 67 0.648 77
2.2 0.637 64 0.648 79 0.654 15
2.3 0.637 59 0.648 80 0.654 15
2.4 0.637 54 0.648 79 0.654 13
2.5 0.637 48 0.648 79 0.654 11
2.6 0.637 40 0.648 77 0.654 09

TABLE II. Effective exponentX̃08(L) of theq52.5 state model,
as a function of disorder strengths and the strip widthL.

s X̃08(6) X̃08(8) X̃08(10) X̃08(12)

1.0 0.9791 0.9513 0.9375 0.9293
1.5 1.0026 0.9754 0.9622
2.0 1.0468 1.0191 1.0057
2.2 1.0662 1.0377 1.0238 1.0158
2.3 1.0760 1.0470 1.0328 1.0246
2.4 1.0859 1.0563 1.0418 1.0333
2.5 1.0958 1.0656 1.0506 1.0419
2.6 1.1057 1.0749 1.0595 1.0504
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numerical instabilities. We can therefore with confiden
truncate the sum of the cumulants after the second one.

Resulting finite-size estimates@17# of X̃08 and X̃1 are
shown in Tables II and III, respectively. Unlike what seem
to be the situation in themagneticsector, these estimate
exhibit a pronounced dependence ons. Jacobsen and Card
@4# worked at fixedR52, which for q52.5 would corre-
spond tos.1.7, and foundX̃08,1 for all q.2. We see here
that the correct way to extract these exponents is to extra
late the s5s* data to theL→` limit. With the help of
improved two-point estimates@4# ~not shown!, we thus ob-
tain

X̃0851.02~1!, X̃151.00~1!, ~2!

which verifies the bound of Ref.@7#. These exponents, a
well as the result for their differenceX̃082X̃150.015(5), are
in very good agreement with the (q22)-expansion; see Eq
~1!.

We have also performed simulations for higher values
q, where the discrepancy between Refs.@4# and@7# was even
more pronounced, sinces* is an increasing function ofq.
For q52.75 andq53, we had to increase the number
iterations toM5109 in order to keep the error bars und
control despite the higher disorder strength. In all cases
found good agreement with Ref.@7# and with the (q22)
expansion, at least in the range where the latter can be
sumed to be valid. A summary of our results is given
Table IV.

III. CONCLUSION

In summary, we have shown that the apparent violation
the correlation length bound@7# observed in Ref.@4# can be

TABLE III. Effective exponent X̃1(L) of the q52.5 state
model, as a function of disorder strengths and the strip widthL.

s X̃1(6) X̃1(8) X̃1(10) X̃1(12)

1.0 0.9791 0.9513 0.9375 0.9293
1.5 1.0016 0.9746 0.9614
2.0 1.0389 1.0124 0.9997
2.2 1.0534 1.0269 1.0142 1.0065
2.3 1.0603 1.0338 1.0212 1.0133
2.4 1.0671 1.0405 1.0279 1.0198
2.5 1.0735 1.0469 1.0343 1.0260
2.6 1.0798 1.0531 1.0405 1.0320

TABLE IV. Numerical results for the critical disorder strengt

(s* or R* ) and energetic scaling exponents (X̃08 and X̃1) as func-
tions of q. The agreement with the two-loop expansion, Eq.~1!, is
good.

q s* R* X̃08 X̃1

Numerics Theory Numerics Theory

2.50 2.5~1! 3.3~2! 1.02~1! 1.023 1.00~1! 1.006
2.75 3.0~3! 4.1~5! 1.04~2! 1.051 1.01~1! 1.013
3.00 3.5~5! 4.7~10! 1.06~3! 1.09 1.02~2! 1.02
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dismissed as a crossover effect due to the lack of tunin
the critical disorder strength. In conjunction with the resu
on degeneracy and descendents given in Ref.@4#, we would
thus claim that the transfer matrix method@4,8# can, at least
in principle, be used to relate the entire Lyapunov spectr
to the operator content of the~as yet unknown! underlying
conformal field theory.
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In particular, we have supplied convincing numerical va
dation of the two-loop expansion~1! for the energetic mul-
tiscaling exponents@11#. Our results also provide further ev
dence in favor of the replica symmetric approach to
perturbative calculations, since the assumption of initial r
lica symmetry breaking leads toX̃1511O(q22)3 @18#,
which seems to be ruled out by the results given in Table
cs
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